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1. Overview

The Goal of the Cloud cover detection challenge was to label clouds in satellite imagery. Clouds
obscure important ground-level features in satellite images, complicating their use in
downstream applications. Cloud detection consists of labeling each pixel of a scene by a binary
variable indicating whether this pixel corresponds to a cloud or not. The labeling map is referred
to as the cloud mask.

The dataset consists of Sentinel-2 satellite imagery stored as GeoTiffs. There were almost 12,000
chips in the training data collected between 2018 and 2020. Each chip is the imagery of a
specific area captured at a specific point in time.

The main idea of the cloud detection method investigated for this project is to use a
convolutional network operating on an input window to produce a binary segmentation map with
label probability for each segment.

2. Literature Review

This section of the report presents an overview of semantic segmentation and classical cloud
segmentation techniques encountered during the task. An understanding of different deep
learning architectures for semantic segmentation of clouds.

2.1. Semantic segmentation

The CNN network can be trained to automatically segment image pixels into the same
object classes in semantic segmentation. Also, it is considered one of the most popular
tasks in computer vision and remote sensing applications for scene understanding [1].
Compared to general computer-vision based semantic segmentation tasks, the challenges
in remote sensing semantic image segmentation of high-resolution sub-meter satellite
images are to produce more refined predictions for every pixel in the large-scale image
[2]. Convolution Neural Network (CNN)-based models have demonstrated excellent
capabilities, making it a state-of-the-art method in remote sensing for semantic
segmentation or classification of dwellings using satellite images.

The recent emergence of deep learning techniques has highly promoted semantic
segmentation implementation in further research. Compared to the traditional algorithm
for segmentation, deep learning-based methods have shown remarkable improvement in
the model's performance [3]. The first review on semantic segmentation using the deep
learning approach was presented by Garcia-Garcia et al. [4]. The authors provided a
broad and organized review of the effective methods that used deep learning for semantic
segmentation and highlighted the performance based on different evaluation metrics.
Later, Wu et al. also presented a review of the segmentation approach and summarized
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their strengths, weaknesses, and major challenges in the paper [5]. Implementation of
FCN for semantic segmentation, initially proposed by Zhang et al. in [6], paved the way
for deep learning-based semantic image segmentation.

Since knowledge of cloud coverage is a must for efficiently handling remote sensing
imagery, several research works have been done for cloud detection to generate binary
masks of the predicted foreground (cloud) and background regions. Some commonly
used methods include the band grouping/thresholding methods and the semantic
segmentation based methods [7]. In this project, we proposed to use multiple state-of-art
models for the semantic segmentation of clouds.

Modified Cloud-Net+ was proposed by Mohajerani & Saeedi via Filtered Jaccard Loss
Function for and Parametric Augmentation [8]. But in the comparative analysis done by
Yim et al. using methods based on semantic segmentation for cloud detection in remote
sensing imagery, they presented that DeepLabV3 performed significantly better
compared to Cloud-Net+ [9]. Also, research was done to solve cloud and cloud shadow
segmentation with a global attention fusion residual network by Xia et al. [10]. Their
purpose was to use ResNet as a backbone to extract semantic information at different
feature levels to deal with boundaries using the atrous spatial pyramid pooling method.
Based on the research done in this paper, the use of DeepLabV3 and PSPNet was carried
on in this project. Further, Jiao et al. used UNet-based refinement networks for cloud and
shadow precise segmentation [11]. They used a UNet with a conditional random field
(Dense CRF) applied as a post-processing step to detect clouds precisely. Eventually,
their experiment illustrated that a refined UNet model with dense CRF could provide a
better solution.

2.2. Cloud Detection

Classical cloud detectors based on machine learning techniques need a set of handcrafted
features computed for each pixel in order to predict if the pixel belongs to a cloud or not.
The main factor of detection performance is the choice of the handcrafted features [12].
On the other hand, the choice of features (e.g. bands) is critical to achieving good
classification performance [13].

When dealing with multispectral images, clouds and backgrounds exhibit different
spectral characteristics. For instance, clouds generally scatter various wavelengths evenly,
hence have high reflectivity in the visible and near-infrared bands. However, this spectral
reflectance decreases slowly with increasing wavelength. Accordingly, the reflectance
values of blue, green, red, and near-infrared bands are used to obtain spectral features of
clouds [14]. This widespread use of the RGB, NIR and additionally SWIR band in the
scientific literature informed our decision to use the band combinations as model
features.
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SWIR[15] was selected, in particular, due to the physical characteristics of cloud spatial
structure, which is more visible as a spectral signature in shortwave irradiance through
the physical mechanism of molecular scattering [16]. Consequently, adding
shortwave-infrared bands can improve the accuracy of the semantic segmentation task of
cloud and cloud shadow.

Cloud Detection Models

Numerous semantic segmentation models have been tested for domain-specific tasks of
cloud segmentation. The most widely accepted cloud semantic segmentation models
include DeepLab, UNet, and UNet++. DeepLab [17] is a state-of-the-art deep
segmentation network for natural images, and it has been tested by [6] together with a
different deep convolutional network, designed for cloud and snow detection tasks in
satellite imagery[18]. On the other hand, UNet is a very effective image segmentation
model with a remarkable performance in many image segmentation tasks, especially
medical image segmentation tasks [19]. Many studies have found that models based on
the U-Net architecture also show excellent performance in satellite remote sensing image
segmentation. For instance, [20] proposes a cloud detection algorithm (RS-Net) based on
the U-net architecture and detects clouds in satellite images. From the experimental
results, it was found that the RS-Net performed better than the conventional method. [21]
presented an improved U-Net convolutional neural network for the task of multi-sensor
cloud and cloud shadow segmentation.

3. Methodology

3.1. Exploratory Data Analysis

Based on two well-known cloud detection datasets (biome-8 and cloud catalog), a couple
of DL models were trained to filter noisy image patches. Our filter rule takes into account
the accuracy and Jaccard index:

bad_image_patch = ((IoU_M1 | IoU_M2) < 0.3) | (acc_M1 | acc_M2) < 0.3

Additionally, we generate a benchmark test dataset using a block split.
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Figure 1: Spatial distribution of the training dataset

3.2. Experiments

Deep learning based cloud detection models were compared both visually and
quantitatively. Models selected for experiments were UNet++ and DeepLabV3 because
of their strong recommendation in the related literature. Details of the model experiments
are given below:

3.2.1. SegNet

SegNet is a deep fully convolutional neural network for semantic segmentation
tasks. It consists of an encoder, decoder and a final pixel-wise classification layer.
Each encoder performs batch normalized convolution operations passed through a
ReLU, followed by a 2X2 max-pooling layer with stride 2. With the max-pooling
indices memorized, the 13 decoders up-sample the input feature maps. The output
of the final decoder is sent into a multiclass soft-max classifier, which generates
class probabilities for each pixel separately. [22]

The choice of SegNet was justified by previous experience with the network and
proven good performance in earlier works of the team, especially considering
boundary delineation.  We used the SegNet implementation proposed by [23].

The code was implemented in colab, adapting the competition’s benchmark. Due
to data storage constraints in Google Drive, only 10% of the data were used. The
achieved overall accuracy was 0.394, lower than all other networks tested within a
Mobilenet_v2 encoder, Adam optimizer and a Binary Cross-Entropy Loss. The
minimum overall accuracy achieved for other models was 0.43. After that, we had
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a meeting to discuss the best models based on the tests on the benchmark and the
literature review. The final decision filtered out SegNet, since other models, such
as Unet++ and DeepLabV3, have shown more promising results.

3.2.2. PSPNet

The Pyramid Scene Parsing Network (PSPNet)[24] is a well-adapted semantic
segmentation model that was built on the architecture of a typical Fully
Convolutional Network, with an encoder – which extracts the features from the
image, and a decoder – which predicts the class of the pixel at the end. The
PSPNet Encoder uses a CNN backbone with dilated convolutions which are
passed through a pyramid pooling module. This architectural design allows the
model to capture image objects at different scales and extract image contexts.
Through the pyramid pooling module, the model extends its receptive field to
learn global context information to capture local context features used for the
scene segmentation. In the case of binary cloud segmentation, the PSPNet
architecture was tested since it has achieved competitive performance like the
DeepLabv3 and consequently fits into several model designs for Fusion [25] [26].

To speed up the experiment time, the PSPNet model was trained on 50% of the
training data with an efficient b0 backbone, Adam optimizer and a Binary
Cross-Entropy Loss. This experiment was tested with and without the Early
Stopping Callback. In the first case, the model yields a performance on the
validation set of 86.31% accuracy and a corresponding 76.98 IoU. In the latter,
the model accuracy increased to 91.70% and  83.87% IoU.

3.2.3. DeepLabV3

DeepLab is a semantic segmentation architecture that has used dilated
convolution technique since its first version. It helps to get the larger field of view
of the image while keeping the computation cost almost constant [17].
Rozenhaimer et al. have used combined cloud and cloud shadow detection using
DeepLab that showed a performance of 90% correct rate values while 8% false
rate values. However, the prediction was highly dependent on different types of
clouds [27].

DeeplabV3 is a modified version of DeepLabV2 that no longer uses Dense CRF
in its architecture. DeepLabv3 outperforms DeepLabv1 and DeepLabv2, even
with the post-processing step Conditional Random Field (CRF) removed, which is
originally used in DeepLabv1 and DeepLabv2 [17]. DeepLabV3 has
Encoder-Decoder with atrous spatial pyramid pooling (ASPP) architecture [28].
In other words, the encoder will have atrous convolution with different rates that
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will provide encoded information; then, the decoder will take the output from
atrous convolution, which will make the dimensional reduction, which is then
concatenated with encoded data. Though ASPP was introduced in DeepLabV2, in
DeepLabV3 batch normalization from inception-v2 was used that showed
improvement in its performance.

Advantages of using DeepLabV3:
● It has adjustable atrous convolution, with which we can adapt to modify

the filter's field of view. We can control the resolution at which feature
responses are computed within a neural network using atrous convolution
without having to learn additional parameters [29].

Disadvantages of using DeepLabV3:
● Computation cost is relatively high.
● Though it has interesting architecture, it was complex to understand.

In order to maintain consistency in parameters, DeepLabV3 was trained in a
similar environment as the other 3 models except that once it was trained with
MobileNetV2 as backbone later tested with EfficientNet-b0 and EfficientNet-b1.
The highest overall accuracy of 0.92 was achieved with efficient net-b1 compared
to the other two when using Binary Cross-Entropy loss. The value of overall
accuracy for validation reached 0.96 and IoU of 0.93 when DeepLabV3 was
trained using MobileNetv2 with IoU as loss function.

3.2.4. UNet++ model

UNet++’s [30] architecture uses the Dense block ideas from DenseNet to give
better performance than U-Net. The architecture is basically a deeply-supervised
encoder-decoder network where their sub-networks are connected through a series
of nested, dense skip pathways. The re-designed skip pathways aim at reducing
the semantic gap between the feature maps

Advantages of using UNet++
● The re-designed skip pathways bridges the semantic gap between encoder

and decoder feature maps.
● The dense skip connections on skip pathways improve the gradient flow
● Deep supervision adopted from the dense net enables model pruning

which improves performance.

For the final implementation of the UNet++ model, we adapted the Tversky
Binary Cross-Entropy Loss to deal with the overestimation and underestimation
of the cloud mask boundary. The Tversky loss is a loss function that is
implemented when dealing with unbalanced datasets, as in our case – where the
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foreground(clouds) pixels cover a lesser area than the background. This kind of
training set typically leads to predictions that are biased towards precision but low
recall (sensitivity). The Tversky index penalizes the false negatives and false
positives to achieve a better trade-off between precision and sensitivity. It is then
added to the BCE loss to form the final loss function.

Before this newly adapted architecture was trained, the images were passed
through a pre-processing workflow using both the CLAHE and sharpening
transformations to make the clouds more distinct compared to the background as
shown in figure 2. The Contrast Limited Adaptive Histogram Equalization
(CLAHE) is a variant of the Adaptive Histogram Equalization (AHE) typically
used in improving image contrast. This transformation operates on small regions
in the image (tiles) and the neighboring tiles are combined using bilinear
interpolation to remove artificial boundaries. The implementation of this
algorithm was adapted from the albumentation transformation class using the clip
limit of 3.5 and a probability of applying the transform to 1, since we want the
transformation to be applied for all images in the training sets. Next, we
sharpened the image and overlayed it on the original image. These transformed
images were passed to the U-Net++ with the adapted loss function leading to an
IoU of 0.81 in the inference mode.

Figure 2: Outcome of the adapted pre-processing with CLAHE and SHARPEN algorithms
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Figure 3: Final prediction with improved boundary information

3.3. Models tested and corresponding performances

The table in this section summarizes the best performance of all the models tested
during the workshop.
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Model Backbone Loss function Validation
Accuracy

Jaccard
Index

Percentage of
data used

Baseline
(U-Net)

ResNet34 Cross-Entropy
Loss

– 0.8151 100%

SegNet MobileNetv2 Dice Loss 0.394 – 10%

PSPNet EfficientNet-b0 Binary
Cross-Entropy
Loss

0.91703 0.83869 50%

UNet++ MobileNetv2 Binary
Cross-Entropy
Loss

0.93335 0.867 50%

DeepLabV3 MobileNetv2 Binary
Cross-Entropy
Loss

0.927 0.862 50%

DeepLabV3 EfficientNet-b0 IoU Loss 0.929 0.862 50%

Table 1: Summary of best model experiments and corresponding performances (Validation accuracy and
Jaccard Index). Note: All models used the Adam optimizer, a batch size of 16 and regularized with the L2

penalty, available through the PyTorch Weight Decay module.

3.4. Post-processing

Here, we appraised the challenges encountered with the output of binary segmentation
models for remote sensing tasks. Fully Convolutional Networks like UNet++,
DeepLabv3 and PSPNet that were tested in this exercise are typically associated with the
production of blurry, noisy and overly regularized boundary objects masks that are less
sharp, lack convexity and connectivity as expected [31]. This same challenge was
encountered in the development of our model and the inferences the model produced as
shown in Figure 1. These excessively smoothed boundaries are false positives that have
been recognized as a typical challenge in the binary cloud segmentation research
community, where certain techniques have been developed to tackle it. Our first approach
was to test a couple of morphological operators to refine the prediction masks to get as
close as possible to the ground truth using conditions for filtering out excessive small
masks that might be other objects rather than clouds and enhancing the edge information
in the final output.
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Figure 4: Predicted versus ground truth cloud masks

The morphological operators that were tested include: 1.) the removal of noisy holes in
the predicted output using a combination of binary closing and binary opening by setting
a threshold for the typical width of small and tiny cirrus clouds [32] [33]. 2.) dealing with
the edge information by a combination of morphological opening, closing, erosion and
dilation. Apart from these basic morphological operations, an attempt to distance
transform function available in skimage1 for addressing boundary detection issues. The
next subsection provides further details on the outcome of these experiments and the
corresponding inferences and observations.

3.4.1. Morphological Operators

Regardless of the model, the visual perception of the predicted models is quite
different from the ground-truth labels. The edges of the cloudy areas seem a lot
rougher in some of the images. Most likely depending on the annotator of the
labels or the mood that he/she was in, the edges can be very detailed, ergo rough,
or very smooth because the annotator did not take too much time to accurately
depict the cloud borders. In general, though, the predictions seem smoother. In
order to change these edges and potentially gain some accuracy improvement, a
workflow2 implementing Mathematical Morphology3 was created.

Since it is impractical to visually investigate all labels to find the best method, the
workflow was created to perform the prediction on only 200 samples and
visualize those. A before-and-after ‘Intersection over Union’ calculation to be
able to quantify the improvement or lack thereof is calculated as well. Several

3 https://scikit-image.org/docs/stable/api/skimage.morphology.html
2 https://github.com/gradient-descendant/compare_labels_pred/blob/main/morphology_.ipynb
1 https://colab.research.google.com/drive/1AeXJCLyUXk6uEvucr_NUvx0YurhEXraI?usp=sharing
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morphological operators with different structuring elements were examined in this
workflow to see which ones perform best (See table 1). A total of 48 runs were
completed for the different operators, structuring elements and sizes of the
structuring elements. The best performances of a given size of the structural
elements are visualized in table 1.

The performance was judged by subtracting the IoU of the normal predicted
labels from the IoU of the manipulated labels; positive values, therefore, indicate
an increase in accuracy while negative numbers show a decrease in accuracy.

Structuring
Element
/ / / / / / /
Method

Disc (3,5,10) Ball (3,5,10) Star(3,5,10) Diamond(3,5,10)

Erosion -0.02 -0.01 -0.02 -0.03

Dilation 0.03 0.01 -0.01 0.03

Opening 0.01 -0.02 0.00 -0.02

Closing 0.04 0.02 0.02 0.01
Table 2: Morphology operators and their structuring elements, the number displayed is the best
result out of the listed SEs averaged over 200 predictions. Positive values: improvement; negative
values: decrease. Accuracy difference in the same units as the accuracy (0<n<1).

Clearly, improvements are marginal at best. Neither operator has a clear
advantage over the others and the differences are very slim. No clear trend that
some operators are better than others could be established. In addition, since the
results of the methods were only quantified for 200 samples, the results might not
be accurately extrapolatable to the whole dataset.

When assessing the performance change for singular predictions, the differences
are quite high. For some styles of labels improvements up to 0.45 were seen,
while accuracy decreases of a similar magnitude could be observed for other
predictions. This intrinsic variance shows that the performance of the morphology
is highly dependent on the labeling style. Those different styles tend to average
out over the dataset, leading to the small average values observed in table 1.

Because of this uncertainty, it was decided not to include any morphological
operators in the submissions.
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Figure 5: Visualization of some RGB input images, their ground truth labels, the predictions and the
predictions after mathematical morphology, in this case, an erosion.

3.4.2. Boundary-Aware Segmentation

We then pivoted to test other techniques from within the model, leveraging the
research outputs of previous researchers in the development of boundary-aware
segmentation models. In this process, we tested two established techniques for
dealing with blurry boundaries in the segmentation models: 1.) A Multi-task
learning approach that regresses the distance transform of the high-level features
from the background pixels [31], and 2.) Adaptation of the Tversky loss function
with the binary cross-entropy loss function for improving precise cloud boundary
predictions. Other methods considered but not tested included the Graphical
method of Conditional Random Fields for merging model outputs.
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I. Boundary-aware segmentation model using Distance Transform

Unlike other existing methods for improving the prediction of precise boundary
information in segmentation models, Audebert et al, 2019 proposed the use of the
distance transform regression. The distance transform regression informs the
network, through a multi-task learning approach, about the proximity of objects
and their corresponding shapes along edges and further provides cues about the
spatial structure of the network. The adapted architecture of the boundary-aware
model using distance transform is shown in Figure 3.

Figure 6: Adapted Segmentation Network with a Distance Transform Regression [31]

We adapted this architecture with the PSPNet model, and experimented with the
data in the cluster. This resulted in surprisingly low model performance with a
validation accuracy of 0.3995 and an “Intersection over Union” accuracy of
0.2127. Due to this low performance, we explored other alternative methods for
improving the segmentation mask boundary.

II. Boundary-aware segmentation model using Tversky Binary
Cross-Entropy Loss function

As already explained in the model experiments session 3.2.2, we adapted a new
loss function adapting both the Tversky loss function and the binary cross-entropy
loss function and pre-processing the data using the CLAHE and SHARPEN
algorithms to deal with two main issues in the modeling process: 1.) the data
imbalance between the cloudy pixels and the background, 2.) the inaccurate
prediction of the cloud masks. This yielded a much better accurate mode
performance, reaching 81% of the IoU metric. This improvement on the modeling
process was finally adapted for the final submission since its inference time was
lesser than others and was adapted using the UNet++ model, see section … for
information on the model inference time.
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3.4.3. Domain knowledge - Cloud detection using multi-temporal image

There are existing methods [34] [35] [36] for using multi-temporal/time-series
images in cloud detection. The idea we proposed with respect to this contest is to
pull from the sentinel2 image collections extra images for each chip(t) at t-1 and
t+1 with the least scene percentage cloud cover, where t represents the image
sensing time filtered from the metadata.

Comparing pixel-to-pixel differences in the multi-temporal images based on high
reflection variation as suggested by [34] between the cloudy image(t) and the less
cloudy image(t-1 & t+1), a “change mask(Ĺ)” is generated for each chip.
Therefore, the change mask (Ĺ) is used in training the model with the provided
label mask. A strength of this approach can be that it can make our model robust.
The artificially generated masks won't have a very high confidence level for
clouds which can put them into the category of noisy labels. Incorporating these
noisy labels in training can make the model robust.

The shortcoming of this approach would be that the mask we will use for training
will be very different from the masks used for testing; this can strongly negatively
impact the accuracy.

3.5. Evaluation Metrics

The performance of each network is evaluated by the pixel difference between the
generated cloud mask and its estimation referred to as pixel accuracy. Along with
accuracy, our main criterion for the comparison of different approaches was a metric
called the Jaccard index, also known as Generalized Intersection over Union (IoU).
Jaccard index is a similarity measure between two label sets. In this case, it is defined as
the size of the intersection divided by the size of the union of non-missing pixels. In this
competition, there should be no missing data. Because it is an accuracy metric, a higher
value is better.

Given the imperfection around boundaries of clouds in the operator cloud mask, our
attention was focused on precision: the error on the boundaries are less important than the
presence or absence of a cloud.
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.

4. Submissions

There were a total of 14 model submissions (and 12 others canceled by the submitter). From
which only one was accepted. The errors emerged mostly by missing packages in the organizers’
environment (especially Omega Conf [37], which was used to facilitate the loading of the
parameters in the training phase); the wrong assignment of directory paths; excessive number of
workers; exceeding the running time limit; rasterio error, among others.

We changed the final submission so that Omegaconf was no longer required and that all directory
mistakes were corrected. One submission went through 3 days before the deadline, a Unet++,
trained using the Tversky loss and 40% of the data. The achieved accuracy was 0.8128, which
was lower than the result in the benchmark best score (approximately 0.82).

The inaccuracies in the number of workers happened because only 6 workers were available in
the submission platform, and 12 were used in the cluster.

Few other submissions were done using DeepLabV3, since it achieved the best scores during our
experiments4. However, it exceeded the allowed running time each time, leading to failed
attempts. The model is evaluated on the organizer’s side with around 10.000 images, which must
run within 4 hours, plus around an extra hour to set up the environment. These limitations
resulted in a backlog of over 30 contestants in the last days of the contest, resulting in a wait
period of around 20 hours per submission (only one submission could enter the queue at each
time).

Despite not surpassing the benchmark score, the submitted model ranked 109 out 854
competitors (Figure 7).

4
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8/edit?usp=sharing
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Figure 7: Final submission outcome, ranked 109 out of 854 competitors.

5. After submission

Towards the end of the competition and as exceeding the running time continues to prevent
submissions, we ran a few tests on the cluster, noting the difference in running time-based on
batch size. Our test data included 1784 chips and 6 workers, which was the maximum number of
workers recommended by the competition organizers. Although during the competition, our test
data consisted of only 289 chips, we decided to use a higher number of chips during this
experiment in order to better access the required running time. Only UNet++ and DeepLabV3
were accessed since they were the models that performed the best and were thus entered into the
competition. The table below illustrates our findings.

Model Batch Size Running Time on the Cluster (seconds)

UNet ++
32 283.760

UNet ++ 16 305.369

UNet ++ 8 311.701

UNet ++ 4 332.433

DeepLabV3 32 376.354

DeepLabV3 16 391.593

DeepLabV3 8 402.536

DeepLabV3 4 402.813

Table 4: Runtime comparison for predictions

Overall, Unet++ runs faster than DeepLabV3 with the same hyperparameters, which may be
explained by the simpler architecture of Unet++. With the increase in the data size, this
difference may have been crucial to run within the time constraint. The accepted model was a
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Unet++ with a batch size of 32 and 6 workers. Unfortunately, in later submissions, we opted for a
batch size of 4 or 8 using DeepLabV3 and 6 or 12 workers, which led to exceeding running time
errors.

6. Challenges and Limitations
During the contest, many challenges were faced and had to be overcome. Starting from the
reproduction of the benchmark notebook provided by the organizers of the contest, where it was
not possible to reproduce their environment and run it on the UBS servers. The environments
could not be installed correctly, mostly due to dependency issues and errors in conda when trying
to install the provided yaml files. Also, while tie downloading of other bands was successful on
our servers, reproducing the same in the submission docker proved to be quite complex. With
differences in writing/reading permissions and the docker’s nature of being a “black box” where
it is not quite clear what is happening, in combination with the long waiting times, led to us using
only the pre-downloaded three bands.

A whole variety of issues had to be overcome when adapting the binary segmentation template5.
The structure of this template was quite complex and required some trial-and-error to get it to
work, which was successful in the end and each group could implement their model based on the
template.

The submission procedure proved to be quite difficult as well. As outlined in the ‘submissions
chapter, the main problems were getting the prediction module to work on their docker, working
around the environment, path and runtime limitation issues. During the time when the prediction
did not work yet, the model’s quality was assessed only through our own train/test split. Not
having the submission on the server forced us to rely only on these results, optimizing the
models to perform well on our own evaluation method. While the performance measured by us
was quite high, it was shocking to see the lower results on the competition platform. Having
more chances to submit predictions and using these results to optimize our models would have
most likely resulted in higher performances, enabling us to generalize the models better.

5 https://github.com/gradient-descendant/binary_segmentation_template
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